Tuesday, 3 January 2017

What is CORRUPT_ON_ACTIVITY simstate ?

CORRUPT_ON_ACTIVITY name itself indicates that corrupt signal if there is any activity .
It means that any combinational or sequential element can hold the current value until there is any activity on the dependent signals.

let us consider below example to understand the above statement.

Example (combo logic ) :

Design:
module top (input in1,in2,output out);

assign out = in1 & in2;

endmodule

UPF:

create_power_domain TOP
add_power_state TOP.primary -state NORMAL_STATE  { -supply_expr {power==`{FULL_ON, 1.2}}  -simstate NORMAL}
add_power_state TOP.primary -state COA_STATE  { -supply_expr {power==`{FULL_ON, 1.0}}  -simstate CORRUPT_ON_ACTIVITY}

>> So here I have two states of power domain. One is NORMAL and another is CORRUPT_ON_ACTIVITY.

>> So when voltage value of power net of power domain TOP changes to 1.0 volt from 1.2 volt. After that it can hold on the last stable value of signal "out" until there is any change in signal "in1" or "in2".

>> If there is any change in signal "in1" or "in2" when the domain simstate is "CORRUPT_ON_ACTIVITY" , signal "out" will changes to 1'bx.

time = 20 ns   in1 = 1 ; in1 = 1 ; out = 1'b1  ; simstate : NORMAL
time = 22 ns   in1 = 1 ; in1 = 1 ; out = 1'b1  ; simstate : CORRUPT_ON_ACTIVITY
time = 30 ns   in1 = 1 ; in1 = 0 ; out = 1'bx  ; simstate : CORRUPT_ON_ACTIVITY



Example (Sequential logic ) :

Design:
module top (input in1,clk,rst,output out);

always @ (posedge clk, posedge rst) begin
 if (!rst) begin
    out <= 1'b0 ;
 end
 else begin
    out <= in1 ;
  end
end

endmodule

UPF:

create_power_domain TOP
add_power_state TOP.primary -state NORMAL_STATE  { -supply_expr {power==`{FULL_ON, 1.2}}  -simstate NORMAL}
add_power_state TOP.primary -state COA_STATE  { -supply_expr {power==`{FULL_ON, 1.0}}  -simstate CORRUPT_ON_ACTIVITY}

>> So here I have two states of power domain. One is NORMAL and another is CORRUPT_ON_ACTIVITY.

>> So when voltage value of power net of power domain TOP changes to 1.0 volt from 1.2 volt. After that it can hold on the last stable value of signal "out" until there is any change in signal "clk" or "rst".

>> If there is any change in signal "clk" or "rst" when the domain simstate is "CORRUPT_ON_ACTIVITY" , signal "out" will changes to 1'bx.

time =  0 ns   clk = 0 ; rst = 1;  in1 = 1 ;out = 1'bx ; simstate : NORMAL
time = 10 ns  clk = 1 ; rst = 1;   in1 = 1 ; out =1 ; simstate : NORMAL
time = 20 ns  clk = 0 ; rst = 1;   in1 = 1 ;out =1 ; simstate : NORMAL
time = 22 ns  clk = 0 ; rst = 1;   in1 = 1 ; out =1 ; simstate : CORRUPT_ON_ACTIVITY
time = 30 ns  clk = 1 ; rst = 1;   in1 = 1 ; out =1'bx ; simstate : CORRUPT_ON_ACTIVITY


Monday, 2 January 2017

What is Latch based isolation ?

Latch based isolation is similar to latch in architecture.

when user specify  "-clamp_value latch " in set_isolation latch type isolation is used for analysis.

We can mimic RTL behavioural model of latch based isolation as below.


Behavioural model for Latch based isolation :


module ISO_LATCH (data,iso_en,q,VDD,VSS) ;
input data,iso_en;
input VDD,VSS ;  //power and ground pin .
output q;

reg q_latch;


assign q = ((VDD && !VSS )  ? (iso_en ? q_latch : data ) : 1'bx) ;

always @ (VDD,VSS, iso_en,data) begin

  if (!(VDD && !VSS ) ) begin
         q_latch <= 1'bx ;
  end
  else if ( iso_en === 1'bx || iso_en === 1'bz) begin
         q_latch <= 1'bx ;
  end
  else if (iso_en === 1'b1 )
        q_latch <= data ;

end


endmodule

Example:


Let us consider below example to understand the simulation behavior of Latch based isolation.


Design:

module top (input in1,in2,iso_en,output out);

assign out = in1 & in2 ;

endmodule


UPF:

create_power_domain PD1
set_isolation iso_1 -domain PD1 -elements {out} -clamp_value latch  -location self -isolation_signal iso_en -isolation_sense high


Here when "iso_en" signal changes to value 1 , value of signal "out" at that time will be latched until "iso_en" is changes to logic 0 , irrespective of domain primary supply .